第三章膨胀的宇宙

时间简史[电子书]
  在20年代天文学家开始观察其他星系中的恒星光谱时,他们发现了最奇异的现象:它们和我们的银河系一样具有吸收的特征线族,只是所有这些线族都向光谱的红端移动了同样相对的量。为了理解这个含意,我们必须先理解多普勒效应。我们已经知道,可见光即是电磁场的起伏或波动,其频率(或每秒的振动数)高达4到7百万亿次的振动。对不同频率的光,人的眼睛看起来为不同颜色,最低的频率出现在光谱的红端,而最高频率在蓝端。想像在离开我们一个固定的距离处有一光源——例如恒星——以固定的频率发出光波,显然我们接受到的波频率和发出时的频率一样(星系的引力场没有足够强到对它有明显的效应)。现在假定这恒星光源开始向我们运动,当光源发出第二个波峰时,它离开我们更近一些,这样此波峰到达我们处所用的时间比恒星不动时要少。这意味着,这两个波峰到达我们的时间间隔变小了,所以我们接收到的波的每秒振动数(频率)比恒星静止时高。同样,如果光源离我们而去,我们接收到的波频率就变低了。所以对于光来说,这意味着,当恒星离开我们而去时,它们的光谱向红端移动(红移);而当恒星靠近我们而来时,光谱则蓝移。这个称之为多普勒效应的频率和速度的关系是我们日常所熟悉的,例如我们听路上来往小汽车的声音:当它开过来时,它的发动机的音调变高(对应于声波的高频率);当它通过我们身边而离开时,它的音调变低。光波或无线电波的行为与之类似。警察就是利用多普勒效应的原理,以无线电波脉冲从车上反射回来的频率来测量车速。
  在哈勃证明了其他星系存在之后的几年里,他花时间为它们的距离以及观察到的光谱分类。那时候大部份人相信,这些星系的运动相当紊乱,所以预料会发现和红移光谱一样多的蓝移光谱。但是,十分令人惊异的是,他发现大部份星系是红移的——几乎所有都远离我们而去!更惊异的是1929年哈勃发表的结果:甚至星系红移的大小也不是杂乱无章的,而是和星系离开我们的距离成正比。换句话讲,星系越远,则它离开我们运动得越快!这表明宇宙不可能像原先人们所想像的那样处于静态,而实际上是在膨胀;不同星系之间的距离一直在增加着。
  宇宙膨胀的发现是20世纪最伟大的智慧革命之一。事后想起来,何以过去从来没有人想到这一点?!牛顿或其他人应该会意识到,静态的宇宙在引力的影响下会很快开始收缩。然而现在假定宇宙正在膨胀,如果它膨胀得相当慢,引力会使之最终停止膨胀,然后开始收缩。但是,如果它膨胀得比某一临界速率更快,引力则永远不足够强而使其膨胀停止,宇宙就永远继续膨胀下去。这有点像一个人在地球表面引燃火箭上天时发生的情形,如果火箭的速度相当慢,引力将最终使之停止并折回地面;另一方面,如果火箭具有比某一临界值(大约每秒7英哩)更高的速度,引力的强度不足以将其拉回,所以它将继续永远飞离地球。19世纪、18世纪甚至17世纪晚期的任何时候,人们都可以从牛顿的引力论预言出宇宙的这个行为。然而,静态宇宙的信念是如此之强,以至于一直维持到了20世纪的早期。甚至爱因斯坦于1915年发表其广义相对论时,还是如此之肯定宇宙必须是静态的,以使得他在其方程中不得不引进一个所谓的宇宙常数来修正自己的理论,使静态的宇宙成为可能。爱因斯坦引入一个新的“反引力”,这力不像其他的力那样,不发源于任何特别的源,而是空间——时间结构所固有的。他宣称,空间——时间有一内在的膨胀的趋向,这可以用来刚好去平衡宇宙间所有物质的相互吸引,结果使宇宙成为静态的。当爱因斯坦和其他物理学家正在想方设法避免广义相对论的非静态宇宙的预言时,看来只有一个人,即俄国物理学家和数学家亚历山大·弗利德曼愿意只用广义相对论着手解释它。
  弗利德曼对于宇宙作了两个非常简单的假定:我们不论往哪个方向看,也不论在任何地方进行观察,宇宙看起来都是一样的。弗利德曼指出,仅仅从这两个观念出发,我们就应该预料宇宙不是静态的。事实上,弗利德曼在1922年所做的预言,正是几年之后埃得温·哈勃所观察到的结果。
  很清楚,关于在任何方向上宇宙都显得是一样的假设实际上是不对的。例如,正如我们所看到的,我们星系中的其他恒星形成了横贯夜空的叫做银河系的光带。但是如果看得更远,星系数目就或多或少显得是同样的。所以假定我们在比星系间距离更大的尺度下来观察,而不管在小尺度下的差异,则宇宙确实在所有的方向看起来是大致一样的。在很长的时间里,这为弗利德曼的假设——作为实际宇宙的粗糙近似提供了充分的证实。