第二章空间和时间

时间简史[电子书]
    3335640952秒之1米)。没有必要引入以太的观念,正如麦克尔逊——莫雷实验显示的那样,以太的存在是无论如何检测不到的。然而,相对论迫使我们从根本上改变了对时间和空间的观念。我们必须接受的观念是:时间不能完全脱离和独立于空间,而必须和空间结合在一起形成所谓的空间——时间的客体。
  我们通常的经验是可以用三个数或座标去描述空间中的一点的位置。譬如,人们可以说屋子里的一点是离开一堵墙7英尺,离开另一堵墙3英尺,并且比地面高5英尺。人们也可以用一定的纬度、经度和海拔来指定该点。人们可以自由地选用任何三个合适的坐标,虽然它们只在有限的范围内有效。人们不是按照在伦敦皮卡迪里圆环以北和以西多少英哩以及高于海平面多少英尺来指明月亮的位置,而是用离开太阳、离开行星轨道面的距离以及月亮与太阳的连线和太阳与临近的一个恒星——例如α-半人马座——连线之夹角来描述之。甚至这些座标对于描写太阳在我们星系中的位置,或我们星系在局部星系群中的位置也没有太多用处。事实上,人们可以用一族互相交迭的坐标碎片来描写整个宇宙。在每一碎片中,人们可用不同的三个座标的集合来指明点的位置。

  图2.2
  一个事件是发生于特定时刻和空间中特定的一点的某种东西。这样,人们可以用四个数或座标来确定它,并且座标系的选择是任意的;人们可以用任何定义好的空间座标和一个任意的时间测量。在相对论中,时间和空间座标没有真正的差别,犹如任何两个空间座标没有真正的差别一样。譬如可以选择一族新的座标,使得第一个空间座标是旧的第一和第二空间座标的组合。例如,测量地球上一点位置不用在伦敦皮卡迪里圆环以北和以西的哩数,而是用在它的东北和西北的哩数。类似地,人们在相对论中可以用新的时间座标,它是旧的时间(以秒作单位)加上往北离开皮卡迪里的距离(以光秒为单位)。

  图2.3
  将一个事件的四座标作为在所谓的空间——时间的四维空间中指定其位置的手段经常是有助的。对我来说,摹想三维空间已经足够困难!然而很容易画出二维空间图,例如地球的表面。(地球的表面是两维的,因为它上面的点的位置可以用两个座标,例如纬度和经度来确定。)通常我将使用二维图,向上增加的方向是时间,水平方向是其中的一个空间座标。不管另外两个空间座标,或者有时用透视法将其中一个表示出来。(这些被称为空间——时间图,如图2.1所示。)例如,在图2.2中时间是向上的,并以年作单位,而沿着从太阳到α—半人马座连线的距离在水平方向上以英哩来测量。太阳和α—半人马座通过空间——时间的途径是由图中的左边和右边的垂直线来表示。从太阳发出的光线沿着对角线走,并且要花4年的时间才能从太阳走到α—半人马座。
  正如我们已经看到的,马克斯韦方程预言,不管光源的速度如何,光速应该是一样的,这已被精密的测量所证实。这样,如果有一个光脉冲从一特定的空间的点在一特定的时刻发出,在时间的进程中,它就会以光球面的形式发散开来,而光球面的形状和大小与源的速度无关。在百万分之一秒后,光就散开成一个半径为300米的球面;百万分之二秒后,半径变成600米;等等。这正如同将一块石头扔到池塘里,水表面的涟漪向四周散开一样,涟漪以圆周的形式散开并越变越大。如果将三维模型设想为包括二维的池塘水面和一维时间,这些扩大的水波的圆圈就画出一个圆锥,其顶点即为石头击到水面的地方和时间(图2.3)。类似地,从一个事件散开的光在四维的空间——时间里形成了一个三维的圆锥,这个圆锥称为事件的未来光锥。以同样的方法可以画出另一个称之为过去光锥的圆锥,它表示所有可以用一光脉冲传播到该事件的事件的集合(图2.4)。